

1 - Document Revision Information

Date Description Author

01.10.2018 Initial Issue CM,LÅ,AL

12.10.2018 Update BR

07.11.2018 Updated content for version 1.0.1 AL

13.11.2018 Updated content for version 1.0.2 AL

15.11.2018 Added requirements AL

03.12.2018 Updated content for version 1.0.3 AL

10.03.2020 Updated content for version 2.0 beta CM

11.05.2020 Updated screenshots and content for version 2.0 RC3 CM

21.05.2020 Updated content for version 2.0 CM

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 2

2 - License
© Rocketfarm AS 2020. All rights reserved.

The OPC UA URCap is based on the open62541 open source OPC UA implementation,
which is licensed under the Mozilla Public License V2.0

Disclaimer

The information contained herein is the property of Rocketfarm AS and shall not be
reproduced in whole or in part without prior written approval of Rocketfram AS. The
information herein is subject to change without notice and should not be construed as a
commitment by Rockerfarm AS. Rocketfarm AS assumes no responsibility for any errors or
omissions in this document.

The Rocketfarm logo is a registered trademark of Rocketfarm AS.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 3

https://open62541.org/
https://www.mozilla.org/en-US/MPL/2.0/

Table of Contents
1 - Document Revision Information 2

2 - License 3

3 - Introduction 6

4 - Installation 7

4.1 - Requirements 7

4.2 - Installing the URCap 8

5 - Configuration 12

5.1 -License - Request and Installation 13

5.1.1 - Requesting a license 14

5.1.2 - Installing a license file 14

5.2 - Activating and deactivating the OPC UA 15

5.3 - Creating a connection to a remote server 16

5.4 - Creating a local server 21

5.4.1 - Initializing the server from the installation 23

5.4.2 - Initializing the server from external INI-file (advanced users) 25

5.4.3 - Starting and stopping the server 25

6 - Programming 27

6.1 - Program nodes 27

6.1.1 - Client 28

6.1.1.1 - Connect 29

6.1.1.2 - Read 30

6.1.1.3 - Write 30

6.1.1.4 - Disconnect 31

6.1.2 - Server 33

6.1.2.1 - Read 33

6.1.2.2 - Write 33

6.2 - Script functions 35

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 4

6.2.1 - opcua_client_connect 35

6.2.2 - opcua_client_get_id 36

6.2.3 - opcua_client_try_connect 36

6.2.4 - opcua_client_disconnect 36

6.2.5 - opcua_client_is_connected 36

6.2.6 - opcua_client_read_byid 36

6.2.7 - opcua_client_read_byname 37

6.2.8 - opcua_client_write_byid 37

6.2.9 - opcua_client_write_byname 37

6.2.10 - opcua_client_last_error 37

6.2.11 - opcua_server_read_byname 38

6.2.12 - opcua_server_write_byname 38

6.2.13 - opcua_server_last_error 38

6.2.14 - opcua_error_to_string 38

6.3 - Low-level API (the OPC UA daemon) 39

6.3.1 - Technical data 39

6.3.2 - Diagnostic functions 39

6.3.3 - Client functions 40

6.3.4 - Server functions 47

6.3.5 - Utility functions 53

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 5

3 - Introduction
The OPC UA URCap is a software module that extends the functionality of the Universal
Robots programming interface with basic data exchange via the industry standard OPC UA
protocol.

The functions provided by this URCap are application-level meaning that the OPC UA data
exchange has to be controlled by the main robot program.

The functions of the OPC UA URCap are further divided into OPC UA client and OPC UA
server. Use the client functions to connect to any remote OPC UA server and exchange data
with the remote server. Use the server functions to provide data to remote OPC UA clients.
Both client and server functions can be used simultaneously.

The typical use cases of this URCap are receiving commands to be performed by the robot,
or reporting the progress to a higher level supervisor system. The URCap is not made for
controlling the robot in real time.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 6

4 - Installation

4.1 - Requirements
The OPC UA URCap is developed using functionality available in the following URCap API
version 1.5.

● CB3.1: available in Universal Robots software v.3.8 or greater,
● E-series: available in Universal Robots software v.5.2 or greater.

It is recommended to enable the network interface on the robot and configure the TCP/IP
settings properly before installing this URCap.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 7

4.2 - Installing the URCap
Install the OPC UA URCap as any other URCaps.

● Go to Setup Robot
● Select URCaps
● press the + button.

Figure 1 The URCaps setup screen

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 8

Select the OPC UA URCap installer package, and press Open.

Figure 2 Select the URCap to be installed

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 9

Press the Restart button when asked.

Figure 3 A restart is required after installing the URCap

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 10

After restarting the robot, the OPC UA URCap is ready. This is indicated by a green check
mark at the URCap name.

Figure 4 The green check mark has to be visible at the URCap name

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 11

5 - Configuration
The OPC UA URCap can be configured in the OPC UA section of the Installation page. The
configuration is stored along with the robot installation.

There are separate configuration pages for the clients, the local server, the underlying
daemon process, and the license.

Figure 5 The client, server, daemon, and license configuration pages

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 12

5.1 -License - Request and Installation
To use the OPC UA URCap, you will need to obtain a valid licence file for the robot in
question.

The license can be temporary or permanent. A temporary license can be installed on any
robot for evaluation purposes. A permanent license is always bound to a specific robot with
its serial number.

Figure 6 The license page

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 13

5.1.1 - Requesting a license
Permanent licenses require a unique license request that is generated on the robot. Perform
the following steps to get a valid license request on a USB disk:

● Insert a USB drive into the robot
● Click the “Copy license request to USB” button in the OPC UA URCap
● Disconnect the USB drive

Send the request file to license@rocketfarm.no. Rocketfarm will return a valid license file for
this specific robot.

5.1.2 - Installing a license file
After receiving a license file from Rocketfarm, perform the following steps:

● Copy the license file to the root folder on a USB drive
● Connect the USB drive to the robot
● Click the “Copy license from USB” button, in the OPC UA URCap
● Disconnect the USB drive

The OPC UA “Enable daemon” button should now be available to activate and use the
URCap.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 14

mailto:license@rocketfarm.no

5.2 - Activating and deactivating the OPC UA
The OPC UA URCap can be activated and deactivated by pressing the "Enable daemon"
and "Disable daemon" buttons respectively. When the URCap is deactivated, no OPC UA
related script code will be generated, and the OPC UA daemon is not running.

Figure 7 Enable and disable the OPC UA URCap

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 15

5.3 - Creating a connection to a remote server
When the OPC UA URCap is active,go to the client configuration page by selecting the
"Client" tab.

Click on "Add new" to create a new client with empty configuration.

Figure 8 Add a new client connection

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 16

Give the connection a friendly name that is easy to read and understand. This will be used
later in the robot program.

Enter the address of the remote OPC UA server you want to connect to. Usually this looks
like opc.tcp://host:4840 where host is either the IP address or the host name of the
server. Refer to the user manual of your OPC UA server or ask the system administrator for
further details.

Figure 9 Client name and endpoint address configuration

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 17

Security settings for the client can be configured on the Security tab. Choose the security
policy, message security mode, and the user authentication policy as required by the remote
server.

The available message security modes are:

● None
● Sign
● Sign and encrypt

The available security policies are:

● None (not selectable, used when message security mode is None)
● Basic128Rsa15
● Basic256
● Basic256Sha256

The available user authentication policies are:

● Anonymous
● Username with password

Figure 10 Security options of a client connection

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 18

Secure client connections require that you install the appropriate certificate and primary key
on the Certificates tab. Both files should be in the DER format, with the following file name
conventions:

● certificate: client.crt.der
● private key: client.key.der

Insert an USB disk containing both files in the root folder, and press the "Copy from USB"
button. The information lines above the buttons should display information about the newly
installed files.

Note: A self-signed certificate will be generated automatically if no certificate is installed.

You can delete the installed certificate and primary key later by pressing the "Delete all"
button.

Figure 11 Install client certificate and private key

When the security options are configured, return to the "Setup" tab and press the "Test
connection" button. The OPC UA URCap will try to connect to the server and discover the
available variables.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 19

Figure 12 Test the client connection after its configuration is completed

If everything goes well, the "Connection test OK" message appears. In this case, press the
"Save Client" button.

In case you see the error message "Connection test failed" check that you have entered the
server address properly and selected the required security options, and that the OPC UA
server is running and is accessible from the robot via network.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 20

5.4 - Creating a local server
The OPC UA URCap includes a local OPC UA server that other clients can access. In order
to get the local server running, you need to specify the TCP port the server can listen on,
and create at least one OPC UA variable. Optionally, the security settings can be configured.

Figure 13 choose a TCP port and start the local OPC UA server

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 21

The server can be configured to accept clients with different security settings. Choose the
allowed message security modes, security policies, and user authentication policies.

The available message security modes are:

● None
● Sign
● Sign and encrypt

The available security policies are:

● None (not selectable, used when message security mode is None)
● Basic128Rsa15
● Basic256
● Basic256Sha256

The available user authentication policies are:

● Anonymous
● Username with password

Figure 14 Server security options

Security mode requires that you install the appropriate certificate and primary key on the
Certificates tab. Both files should be in the DER format, with the following file name
conventions:

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 22

● certificate: server.crt.der
● private key: server.key.der

Insert an USB disk containing both files in the root folder, and press the "Copy from USB"
button. The information lines above the buttons should display information about the newly
installed files.

Note: A self-signed certificate will be generated automatically if no certificate is installed.

You can delete the installed certificate and primary key later by pressing the "Delete all"
button.

Figure 15 Install server certificate and private key

5.4.1 - Initializing the server from the installation
Go to the "Variables" tab and uncheck the "Initialize from file" checkbox. Enter the name,
select the variable type, and enter the default value of the variable. Press the "Add Variable"
button.

Currently the following data types are supported:

● Boolean: logical value (true or false)
● Integer: integer value

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 23

● Double: double precision floating point value
● String: text

To delete one or more existing variables, select the variable(s) in the variable list, and press
the "Delete Variable" button.

Figure 16 The server variables editor

Note: The server cannot be started until at least one OPC UA variable is defined.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 24

5.4.2 - Initializing the server from external INI-file (advanced users)
The OPC UA server can be initialized from an external INI-file.

Make sure you have copied the ini-file into the “/programs ” directory on the robot before
starting the OPC server.

Select the checkbox "Initialize from file" and enter the file name (e.g. opcua.ini) that contains
the variable definitions.

Each line in the ini-file defines one and only one OPC UA variable. The format of one line is
the following:

name;type;default

● name: the name of the OPC UA variable
● type: type of the variable (bool, int, double, string)
● default: default value of the OPC UA variable on server start.

If the file format is correct, the defined variables are shown in the "Variables" window.

Figure 17 Initialize the OPC UA server from INI-file

5.4.3 - Starting and stopping the server
Press the "Start server" button to start the local OPC UA server.

Press the "Stop server" button to stop the local OPC UA server.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 25

This setting will be saved along with the robot installation, so the server can start
automatically on the next startup

Figure 18 Starting and stopping the local OPC UA server

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 26

6 - Programming
The functions of the OPC UA URCap can be accessed in 3 different ways:

● Program nodes
● Script functions
● Low-level API (the OPC UA daemon)

6.1 - Program nodes
The easiest and most convenient way of using the OPC UA URCap is the built-in program
nodes, although the functionality is limited.

Figure 19 The OPC UA program nodes in the program editor

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 27

6.1.1 - Client
Select the "OPC UA Client" program node to communicate with a remote OPC UA server.

The drop-down list shows the friendly name of each remote server connection, as they were
configured on the Installation screen. Select the server that you want to connect to.

Choose the operation you want to perform:

● connect: open the connection to the remote server
● read: copy the value of a remote OPC UA variable into a URScript program variable
● write: copy the value of a URScript program variable into a remote OPC UA variable
● disconnect: close the connection to the remote server

Figure 20 OPC UA client program node

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 28

6.1.1.1 - Connect
Select the "Connect" operation to connect to a remote OPC UA server. Choose a client that
has been configured during the Installation.

Select the action to be performed when the connection to the remote server fails. The
following options are available:

● Do nothing: the robot program can continue without any action;
● Retry until success: the robot program keeps trying to connect;
● Terminate program: the robot program stops with an error message.

Figure 21 Client connect operation

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 29

6.1.1.2 - Read
Select the "Read" operation to copy the value of a remote OPC UA variable into the UR
program variable.

The data structure on the remote server is shown in a tree view. Use the "Reload variables"
button to refresh the data structure. This can be necessary when the server structure has
changed since it was configured in the Installation.

Select the appropriate row and click "Confirm Selection". The data type of the selected value
is displayed below the tree.

Choose an existing UR program variable, or enter the name of a new variable and press
"Create new".

Select the action to be performed when the read operation fails.

Figure 22 Client read operation

6.1.1.3 - Write
Select the "Write" operation to copy the value of a UR program variable into a remote OPC
UA variable.

The data structure on the remote server is shown in a tree view. Use the "Reload variables"
button to refresh the data structure. This can be necessary when the server structure has
changed since it was configured in the Installation.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 30

Select the appropriate row and click "Confirm Selection". The data type of the selected value
is displayed below the tree.

Choose an existing UR program variable whose value will be written to the remote server.

Select the action to be performed when the write operation fails.

Figure 23 Client write operation

6.1.1.4 - Disconnect
Select the "Disconnect" operation to close the connection to a remote OPC UA server.
Choose a client that has been configured during the Installation.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 31

Figure 24 Client disconnect operation

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 32

6.1.2 - Server
Use this program node if you want to exchange data between the local OPC UA server and
the main robot program.

6.1.2.1 - Read
Select the "Read" operation to copy the value of a local OPC UA variable into the UR
program variable.

Select the appropriate OPC UA variable from the list. The data type of the selected value is
displayed below the list.

Choose an existing UR program variable, or enter the name of a new variable and press
"Create new".

Select the action to be performed when the read operation fails.

Figure 25 Server read operation

6.1.2.2 - Write
Select the "Write" operation to copy the value of a UR program variable into a local OPC UA
variable.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 33

The data structure on the remote server is shown in a tree view. Use the "Reload variables"
button to refresh the data structure. This can be necessary when the server structure has
changed since it was configured in the Installation.

Select the appropriate OPC UA variable from the list. The data type of the selected value is
displayed below the list.

Choose an existing UR program variable whose value will be written to the local server.

Select the action to be performed when the write operation fails.

Figure 26 Server write operation

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 34

6.2 - Script functions
The following functions are available in the built-in Function Editor:

● opcua_client_connect

● opcua_client_get_id

● opcua_client_try_connect

● opcua_client_disconnect

● opcua_client_is_connected

● opcua_client_read_byid

● opcua_client_read_byname

● opcua_client_write_byid

● opcua_client_write_byname

● opcua_client_get_last_error

● opcua_server_read_byname

● opcua_server_write_byname

● opcua_server_get_last_error

● opcua_error_to_string

Figure 27 Using the built-in OPC UA functions in the Expression Editor

6.2.1 - opcua_client_connect
Use this function to connect directly to a remote OPC UA server. Security options and user
authentication are not supported.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 35

Syntax: client_id = opcua_client_connect("opc.tcp://address:port")

Return value: client id. On error, the return value is zero or negative.

6.2.2 - opcua_client_get_id
Use this function to obtain a client id of a client that is configured on the Installation page.

Syntax: client_id = opcua_client_get_id("clientName")

Return value: client id. On error, the return value is zero or negative.

Note: The "Client Connect" program node creates a variable with a name opcua_client_idX
where X is the 0-based index of the connection in the Installation tab. This can be used as
an alternative to the above function call.

6.2.3 - opcua_client_try_connect
Use this function to open a network connection to a remote server as a client. The client id is
specified in the input parameter.

Syntax: result = opcua_client_try_connect(client_id)

Return value: True on success, False on error.

6.2.4 - opcua_client_disconnect
Use this function to close the network connection to a remote server. The client id is
specified in the input parameter.

Syntax: result = opcua_client_disconnect(client_id)

Return value: True on success, False on error.

6.2.5 - opcua_client_is_connected
Syntax: result = opcua_client_is_connected(client_id)

Return value: True if the client is connected, otherwise False.

6.2.6 - opcua_client_read_byid
Use this function to read the value of a remote OPC UA server variable specified by a
numerical node id.

Syntax: value = opcua_client_read_byid(client_id, namespace_id, id)

Return value: the value returned by the server.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 36

6.2.7 - opcua_client_read_byname
Use this function to read the value of a remote OPC UA server variable specified by a string
node name.

Syntax: value = opcua_client_read_byname(client_id, namespace_id, name)

Return value: the value returned by the server.

Note: Some OPC UA servers may use special characters in string identifiers, which could
lead to syntax errors in the robot program. Use the '\' (backslash) character to enter the
numerical value of such characters in a 4-digit hexadecimal form. Use \0022 to represent
double quotes, and \005c for the backslash character itself.

6.2.8 - opcua_client_write_byid
Use this function to change the value of a remote OPC UA server variable specified by a
numerical node id.

Syntax: result = opcua_client_write_byid(client_id, namespace_id, id, value)

Return value: True if successful, otherwise False.

6.2.9 - opcua_client_write_byname
Use this function to change the value of a remote OPC UA server variable specified by a
string node name.

Syntax: result = opcua_client_write_byname(client_id, namespace_id, name, value)

Return value: True if successful, otherwise False.

Note: See note under opcua_client_read_byname.

6.2.10 - opcua_client_last_error
Use this function to obtain the last error code from the underlying open62541 module after a
failed function call.

Syntax: error_code = opcua_client_last_error(client_id)

Return value: nonzero error code on error, or zero if the last function call was successful.

Note: More information about the error codes available here:
https://open62541.org/doc/current/statuscodes.html

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 37

https://open62541.org/doc/current/statuscodes.html

6.2.11 - opcua_server_read_byname
Use this function to read the value of a local OPC UA server variable specified by a string
node name.

Syntax: value = opcua_server_read_byname(name)

Return value: the value returned by the server.

6.2.12 - opcua_server_write_byname
Use this function to change the value of a local OPC UA server variable specified by a string
node name.

Syntax: result = opcua_server_write_byname(name, value)

Return value: True if successful, otherwise False.

6.2.13 - opcua_server_last_error
Use this function to obtain the last error code from the underlying open62541 module after a
failed function call.

Syntax: error_code = opcua_server_last_error()

Return value: nonzero error code on error, or zero if the last function call was successful.

Note: See note under opcua_client_last_error.

6.2.14 - opcua_error_to_string
Use this function to get detailed error text for a given numerical error code. The error text is
returned in English.

Syntax: text = opcua_error_to_string(error_code)

Return value: The error text that corresponds to the specified error code.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 38

6.3 - Low-level API (the OPC UA daemon)
Use the low-level functions of the OPC UA daemon to get full access to all functions of the
OPC UA URCap.

6.3.1 - Technical data

Global variable for XMLRPC function calls opcua_daemon

XMLRPC port number 40409, can be altered

Contributed id in *.installation no.rocketfarm.urcap.opcua

Current version 2.0

6.3.2 - Diagnostic functions

Name ping

Signature bool ping()

Description Test function. Always returns true.

Parameters

Return value true

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 39

6.3.3 - Client functions

Name client_create

Signature unsigned int client_create(string name, string address)

Description Creates a client with the specified name and connection endpoint address

Parameters string name: unique name of the client

string address: endpoint address of the remote OPC UA server

Return value unsigned int client_id: a positive number, a unique id of the newly created
client; zero on error

Remarks The client won't connect automatically until client_connect is performed.

Name client_set_security_mode

Signature bool client_set_security_mode(unsigned int client_id, unsigned int
securityMode)

Description Selects the message security mode to be used by the client.

Parameters unsigned int client_id: unique identifier of the client

unsigned int securityMode: message security mode to be used:

● 0: None
● 1: Sign
● 2: Sign and encrypt

Return value true if successful, otherwise false

Remarks The function has no effect when the client is already connected. Use this
function before client_connect.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 40

Name client_set_security_policy

Signature bool client_set_security_policy(unsigned int client_id, unsigned int
securityPolicy)

Description Selects the security policy to be used by the client.

Parameters unsigned int client_id: unique identifier of the client

unsigned int securityPolicy: security policy to be used:

● 0: None
● 1: Basic128Rsa15
● 2: Basic256
● 3: Basic256Sha256

Return value true if successful, otherwise false

Remarks The function has no effect when the client is already connected. Use this
function before client_connect.

Name client_set_username_and_password

Signature bool client_set_username_and_password(unsigned int client_id, string
username, string password)

Description Sets the username and password to be used when connecting to the remote
server.

Parameters unsigned int client_id: unique identifier of the client

string username: the login name to be used

string password: encoded password, each character is represented as a
4-digit hexadecimal number

Return value true if successful, otherwise false

Remarks The function has no effect when the client is already connected. Use this
function before client_connect.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 41

Name client_enable_authentication

Signature bool client_enable_authentication(unsigned int client_id, bool enable)

Description Changes the logon method to be used in the client connection. Switches
between anonymous, and username + password authentication.

Parameters unsigned int client_id: unique identifier of the client

bool enable: true if username and password should be used, false if
anonymous login should be used.

Return value true if successful, otherwise false

Remarks The function has no effect when the client is already connected. Use this
function before client_connect.

Name client_get_name

Signature string client_get_name(unsigned int client_id)

Description Returns the name of the specified client.

Parameters unsigned int client_id: unique identifier of the client

Return value string client_name: the name of the client identified by client_id

Name client_get_id

Signature unsigned int client_get_id(string client_name)

Description Returns the unique identifier of the client with the specified name.

Parameters string client_name: name of the client in question

Return value unsigned int client_id: nonzero client identifier, or zero if not found

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 42

Name client_connect

Signature bool client_connect(unsigned int client_id)

Description connects to a remote OPC UA server

Parameters unsigned int client_id: the unique identifier of the client, must be obtained from
the client_create function

Return value TODO REFACTOR the return value is 0 or 1 not bool

Name client_connect

Signature unsigned int client_connect(string address)

Description connects to a remote OPC UA server

Parameters string address: the full address of the OPC UA server, e.g.

opc.tcp://127.0.0.1:4840

Return value unsigned int client_id: unique identifier of the client, zero if not successful

Remarks simultaneously connecting to multiple servers are supported via client ids, see
return value

Name client_disconnect

Signature bool client_disconnect(unsigned int client_id)

Description disconnects from the given OPC UA server

Parameters unsigned int client_id: identifier of the client to be disconnected

Return value true if successful

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 43

Name client_is_connected

Signature bool client_is_connected(unsigned int client_id)

Description returns true if the session is connected

Parameters unsigned int client_id: unique identifier of the client

Return value true if connected

Name client_test

Signature object[] client_test(string address)

Description Internally used by automatic object discovery.

Parameters string address: the address of the remote server to be tested

Return value array of variable description objects, where each element contains

● namespace_id: the OPC UA namespace id of the variable

● is_numeric: true if the variable has numeric id, otherwise false

● variable_id: an integer or a string, depending on is_numeric

● description: the display name of the OPC UA variable

Name client_read_variable_by_id

Signature int/double/string client_read_variable_by_id(unsigned int client_id, int
namespaceId, int variableId)

Description reads the actual value of the given variable

Parameters unsigned int client_id: unique identifier of the client

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 44

int namespaceId: namespace identifier (see OPC UA)

int variableId: variable identifier (see OPC UA)

Return value returns the value of the specified variable (depending on type it can return int,
double or string) or "NULL" if error occurred

Name client_read_variable_by_name

Signature int/double/string client_read_variable_by_name(unsigned int client_id, int
namespaceId, string variableName)

Description reads the actual value of the given variable

Parameters unsigned int client_id: unique identifier of the client

int namespaceId: namespace identifier (see OPC UA)

string variableName: the OPC UA variable name

Return value returns the value of the specified variable (depending on type it can return int,
double or string) or "NULL" if error occurred

Remarks See note about escaping special characters in string identifiers under 6.2.7
opcua_client_read_byname

Name client_write_variable_by_id

Signature bool client_write_variable_by_id(unsigned int client_id, int namespaceId, int
variableId, int/double/string variableValue)

Description writes the actual value of the given variable

Parameters unsigned int client_id: unique identifier of the client

int namespaceId: namespace identifier (see OPC UA)

int variableId: the OPC UA variable id

int/double/string variableValue: the new value to be written

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 45

Return value true if successful, false otherwise

Name client_write_variable_by_name

Signature bool client_write_variable_by_name(unsigned int client_id, int namespaceId,
string variableName, int/double/string variableValue)

Description writes the actual value of the given variable

Parameters unsigned int client_id: unique identifier of the client

int namespaceId: namespace identifier (see OPC UA)

string variableName: the OPC UA variable name

int/double/string variableValue: the new value to be written

Return value true if successful, false otherwise

Remarks See note about escaping special characters in string identifiers under 6.2.7
opcua_client_read_byname

Name client_get_last_error

Signature int client_get_last_error(unsigned int client_id)

Description Returns the last error of the underlying open62541 module, or zero if no error
occurred.

Parameters unsigned int client_id: unique identifier of the client

Return value nonzero error code, or zero if the last function call succeeded.

Remarks See note under opcua_client_last_error.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 46

6.3.4 - Server functions

Name server_start (deprecated)

Signature bool server_start(int port=4840, bool fromFile=false, string
fileNameOrConfig="opcua.ini")

Description Loads the OPC UA server configuration from the given file or the given
configuration, and starts the local OPC UA server on the given port.

Parameters int port: the TCP port where the OPC UA server will listen

bool fromFile: true if fileNameOrConfig contains a file name, false if it contains
the configuration data itself

string fileNameOrConfig: can contain the name of the ini-file, or the content
itself (see the ini-file definition below)

Return value true if successfully started.

Remarks If the server is already running, it will be stopped and then started again.

Remarks Configuration is a multi-line text, where each row describes one OPC UA
variable. The row format is the following:

name;type;defvalue where

name: the name of the variable

type: one of "int", "double", "string"

defvalue: default value for the variable (on startup)

Name server_init

Signature bool server_init(int port=4840, bool fromFile=false, string
fileNameOrConfig="opcua.ini")

Description Loads the OPC UA server configuration from the given file or the given
configuration, and creates the local OPC UA server on the given port, but does
not start the server.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 47

Parameters int port: the TCP port where the OPC UA server will listen

bool fromFile: true if fileNameOrConfig contains a file name, false if it contains
the configuration data itself

string fileNameOrConfig: can contain the name of the ini-file, or the content
itself (see the ini-file definition below)

Return value true if successfully created.

Remarks If the server is already running, it will be stopped and then started again.

Remarks Configuration is a multi-line text, where each row describes one OPC UA
variable. The row format is the following:

name;type;defvalue where

name: the name of the variable

type: one of "int", "double", "string"

defvalue: default value for the variable (on startup)

Name server_set_security_mode

Signature bool server_set_security_mode(unsigned int securityMode, bool enabled)

Description Enables or disables the specified message security mode of the server.

Parameters unsigned int securityMode: the message security mode to be enabled or
disabled:

● 0: None
● 1: Sign
● 2: Sign and encrypt

bool enabled: true if the above specified mode is enabled, otherwise false

Return value true on success, otherwise false

Remarks The function has no effect when the local server is already running. Use this
function before invoking server_run.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 48

Name server_set_security_policy

Signature bool server_set_security_policy(unsigned int securityPolicy, bool enabled)

Description Enables or disables the specified security policy of the server.

Parameters unsigned int securityPolicy: the security policy to be enabled/disabled:

● 0: None
● 1: Basic128Rsa15
● 2: Basic256
● 3: Basic256Sha256

bool enabled: true if the above specified security policy is enabled, otherwise
false

Return value true on success, otherwise false

Remarks The function has no effect when the local server is already running. Use this
function before invoking server_run.

Name server_set_authentication_policy

Signature bool server_set_authentication_policy(unsigned int authenticationPolicy, bool
enabled)

Description Enables or disables the specified authentication policy of the server.

Parameters unsigned int authenticationPolicy: the authentication policy to be enabled or
disabled:

● 0: Anonymous
● 1: Username with password

bool enabled: true if the above specified authentication policy is enabled,
otherwise false

Return value true on success, otherwise false

Remarks The function has no effect when the local server is already running. Use this
function before invoking server_run.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 49

Name server_add_user

Signature bool server_add_user(string username, string password)

Description Creates a user on the local server.

Parameters string username: the login name to be created

string password: encoded password, characters are represented in 4-digit
hexadecimal numbers

Return value true on success, otherwise false

Remarks The function has no effect when the local server is already running. Use this
function before invoking server_run.

Name server_run

Signature bool server_run()

Description Starts the local OPC UA server that has been created and initialized by a
preceeding call to server_init and other configuration functions.

Parameters

Return value Returns true if the server is started, otherwise false.

Name server_is_running

Signature bool server_is_running()

Description Returns the running status of the local OPC UA server.

Parameters

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 50

Return value Returns true if the server is running, otherwise false.

Name server_stop

Signature bool server_stop()

Description Stops the running server and deletes all underlying data structures.

Parameters

Return value true

Name server_read_variable_by_name

Signature int/double/string server_read_variable_by_name(string attrName)

Description reads the given variable of the local OPC UA server

Parameters string attrName: name of the variable (see ini file under server_start)

Return value int value: 32-bit integer value

double value: double-precision floating point value

string value: text

Name server_write_variable_by_name

Signature bool server_write_variable_by_name(string attrName, int/double/string value)

Description writes the given variable

Parameters string attrName: name of the variable (see ini file under server_start)

int value: 32-bit integer value

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 51

double value: double-precision floating point value

string value: text

Return value true if successful, otherwise false

Name server_get_last_error

Signature int server_get_last_error()

Description Returns the last error of the underlying open62541 module, or zero if no error
occurred.

Parameters

Return value nonzero error code, or zero if the last function call succeeded.

Remarks See note under opcua_client_last_error.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 52

6.3.5 - Utility functions

Name error_code_to_string

Signature string error_code_to_string(int error_code)

Description Returns the English error text that corresponds to the specified OPC UA error
code.

Parameters int error_code: the OPC UA error code that needs to be described.

Return value string text: the description of the error in English

Name get_current_timestamp

Signature int get_current_timestamp()

Description Returns the current timestamp - seconds since 1970.01.01. 00:00:00 GMT -
as an integer.

Parameters

Return value int result: seconds since 1970.01.01. 00:00:00 GMT.

Name get_current_datetime

Signature int[] get_current_datetime()

Description Returns the current local date and time as an array of integers.

Parameters

Return value The returned array elements are:

0: year

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 53

1: month (1-12)

2: day of the month (1-31)

3: hour (0-23)

4: minutes (0-59)

5: seconds (0-59)

6: day of the week (1: monday,.. 7: sunday)

7: day of the year (1-366)

Name get_current_datetime_utc

Signature int[] get_current_datetime_utc

Description Returns the current UTC date and time as an array of integers.

Parameters

Return value The same structure as get_current_datetime, but in UTC instead of the local
time zone.

Name concat

Signature string concat(bool/int/double/string value1, value2, ...)

Description Concatenates all input parameters into a string.

Parameters bool/int/double/string valueN: a value that can be boolean, integer, double, or
string type. The number of parameters is not limited.

Return value The input parameters concatenated into a string.

Name substring

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 54

Signature string substring(string source, int startPos=0, int length=-1)

Description Returns a substring of the source string.

This is a wrapper for the string::substr() C++ function.

Parameters string source: the source string

int startPos: optional, zero-based position in the source string

int length: optional, length of the substring, or "until the end of the string" when
not given.

Return value A substring of the given string. For further details see

http://www.cplusplus.com/reference/string/string/substr/

Name strfind

Signature int strfind(string source, string sequence, int startPos=0)

Description Finds a substring in a string. Returns the index of the first character.

This is a wrapper for the string::find() C++ function.

Parameters string source: the source string

string sequence: the string to be found in the source string

int startPos: the zero-based position from where the search should begin

Return value Zero-based index of the first occurrence of the sequence in the source string.
If the sequence cannot be found, the return value is -1.

Currently supported variable types: bool, string, integer, double.

Arrays are not supported for now, but are scheduled to be implemented in a release in the
near future.

Version 2.0 © Rocketfarm AS 2020. All rights reserved. 55

http://www.cplusplus.com/reference/string/string/substr/

